segunda-feira, 13 de agosto de 2012

acido na fruta


distribuiçao dos acidos e bases


tabela das cores dos acidos


Características do Ácido

Características do Ácido


Os ácidos possuem sabor azedo ou cáustico, facilmente identificado em frutas cítricas, como limão, laranja e maçã. Têm a capacidade de alterar a cor de certas substâncias orgânicas, denominadas indicadores. Assim, em presença de solução aquosa ácida, o papel azul de tornassol passa para vermelho; o papel vermelho-do-congo passa para azul e uma solução básica de fenolftaleína passa de vermelho para incolor. Em soluções aquosas diluídas, os ácidos são bons condutores de eletricidade.
Os ácidos apresentam, em solução aquosa, diferentes graus de ionização, isto é, uma relação variável entre o número de moléculas ionizadas e o de moléculas dissolvidas. Dessa forma, por meio do valor da constante de ionização, pode-se medir a força de um ácido. Quanto mais elevado for o valor dessa constante, maior será a força do ácido e maior a concentração de íons hidrogênio.
Outro artifício utilizado para avaliar o poder dos ácidos é o conceito de pH. Definido como o logaritmo negativo da concentração de íons hidrogênio em solução aquosa, o pH varia entre zero e 14. Todos os ácidos apresentam pH entre zero e 7, sendo que, quanto menor esse valor, mais elevada é a força do ácido.
Além disso, os ácidos reagem com os metais colocados acima do hidrogênio na série de atividade dos metais ou na tabela de potenciais de oxidação, liberando hidrogênio e formando o sal correspondente.
Por outro lado, os ácidos oxidantes, isto é, aqueles cujos íons negativos têm capacidade de realizar reações de oxidação, não libertam hidrogênio e reagem até com os metais abaixo do hidrogênio na tabela de potenciais.
Os ácidos reagem com os óxidos (exceto os neutros e os anidridos) formando sais e água, e com os carbonatos e bicarbonatos desprendendo CO2. Os ácidos reagem com as bases, formando sais e água. Daí dizer-se que a reação de ácidos com bases é de salificação (devido à formação de sal) ou de neutralização (devido à anulação do caráter básico da solução), tornando o meio neutro.

Acidos mais comuns

Ácidos mais comuns na química do cotidiano
Ácido clorídrico (HCl)
O ácido impuro (técnico) é vendido no comércio com o nome de ácido muriático.
É encontrado no suco gástrico .
É um reagente muito usado na indústria e no laboratório.
É usado na limpeza de edifícios após a sua caiação, para remover os respingos de cal.
É usado na limpeza de superfícies metálicas antes da soldagem dos respectivos metais.
Ácido sulfúrico (H2SO4)
É o ácido mais importante na indústria e no laboratório. O poder econômico de um país pode ser avaliado pela quantidade de ácido sulfúrico que ele fabrica e consome.
O maior consumo de ácido sulfúrico é na fabricação de fertilizantes, como os superfosfatos e o sulfato de amônio.
É o ácido dos acumuladores de chumbo (baterias) usados nos automóveis.
É consumido em enormes quantidades em inúmeros processos industriais, como processos da indústria petroquímica, fabricação de papel, corantes, etc.
O ácido sulfúrico concentrado é um dos desidratantes mais enérgicos. Assim, ele carboniza os hidratos de carbono como os açúcares, amido e celulose; a carbonização é devido à desidratação desses materiais.
O ácido sulfúrico "destrói" o papel, o tecido de algodão, a madeira, o açúcar e outros materiais devido à sua enérgica ação desidratante.
O ácido sulfúrico concentrado tem ação corrosiva sobre os tecidos dos organismos vivos também devido à sua ação desidratante. Produz sérias queimaduras na pele. Por isso, é necessário extremo cuidado ao manusear esse ácido.
As chuvas ácidas em ambiente poluídos com dióxido de enxofre contêm H2SO4 e causam grande impacto ambiental.
Ácido nítrico (HNO3)
Depois do sulfúrico, é o ácido mais fabricado e mais consumido na indústria. Seu maior consumo é na fabricação de explosivos, como nitroglicerina (dinamite), trinitrotolueno (TNT), trinitrocelulose (algodão pólvora) e ácido pícrico e picrato de amônio.
É usado na fabricação do salitre (NaNO3, KNO3) e da pólvora negra (salitre + carvão + enxofre).
As chuvas ácidas em ambientes poluídos com óxidos do nitrogênio contém HNO3 e causam sério impacto ambiental. Em ambientes não poluídos, mas na presença de raios e relâmpagos, a chuva também contém HNO3, mas em proporção mínima.
O ácido nítrico concentrado é um líquido muito volátil; seus vapores são muito tóxicos. É um ácido muito corrosivo e, assim como o ácido sulfúrico, é necessário muito cuidado para manuseá- lo.
Ácido fosfórico (H3PO4)
Os seus sais (fosfatos) têm grande aplicação como fertilizantes na agricultura.
É usado como aditivo em alguns refrigerantes.
Ácido acético (CH3 - COOH)
É o ácido de vinagre, produto indispensável na cozinha (preparo de saladas e maioneses).
Ácido fluorídrico (HF)
Tem a particularidade de corroer o vidro, devendo ser guardado em frascos de polietileno. É usado para gravar sobre vidro.
Ácido carbônico (H2CO3)
É o ácido das águas minerais gaseificadas e dos refrigerantes. Forma-se na reação do gás carbônico com a água: 
CO2 + H2O ® H2CO3
CLASSIFICAÇÃO DOS ÁCIDOS
Quanto a presença de oxigênio:
1- Hidrácidos – não possuem oxigênio. 
Ex: HI, HCN, H4 [Fe(CN)6]
2- Oxiácidos – possuem oxigênio 
Ex: HNO2, H3PO4, H4P2O7
Quanto a volatidade:
• Voláteis – apresentam grande tendência a evaporação. 
Ex: HNO2, HNO3 e Hidrácidos
• Fixos: Apresentam pequena tendência à evaporação. 
Ex: Os Oxiácidos

Acelerador: Construção

Aceleradores de partículas – a construção
Depois de cavado nosso túnel, podemos colocar as coisas nos seus devidos lugares. Começaremos com o tubo de cobre, que fará um forte vácuo por dentro, para que as partículas viagem. Por que o cobre?
Simples. Porque ele é um ótimo condutor de eletricidade e magnetismo. Afinal, precisaremos de ambos.
O tubo de cobre tem que ser organizado de uma forma que forme uma série de células que chamamos de cavidades. E o espaço dessas cavidades é combinado com o comprimento de onda das microondas. Podemos usar tanto elétrons quanto pósitrons (antipartícula do elétron), pois passam em grupos por essa cavidade e esses grupos têm que ser impulsionados no tempo certo dentro do campo elétrico para as cavidades.
Nos cíclotrons é onde produzimos as microondas e, através dele, os elétrons viajarão com uma velocidade regular. Quando os elétrons variam a velocidade, eles emitem radiação na forma de microondas (e que radiação!)
Os imãs supercondutores são colocados ao longo do tubo e mantêm os feixes de partículas confinados e organizados bem no meio em uma série de polos alternados (positivo\ negativo).
E para a tão esperada colisão? Precisaremos de alvos, não é mesmo? Para esses alvos podemos utilizar finas folhas de metal. E, o mais importante, depois de todo esse trabalho…os detectores.
Pois, através deles conseguiremos ver as partículas e a radiação emitida por elas depois da colisão. Não esqueça de que isso tudo tem que ser feito no vácuo. Mas, por que o vácuo?
Em primeiro lugar, para evitar faíscas que danificariam as estruturas do nosso acelerador e evitar a perda de energia. Afinal, não queremos que nossos feixes de partículas colidam com moléculas de ar, não é mesmo? Se isso acontecesse o nosso experimento estaria perdido.
Ah! Não se esqueçam de manter o sistema de resfriamento em ordem: não queremos que a tubulação de cobre derreta ou se expanda, qualquer alteração será um desastre.

Os computadores e eletrônicos controlarão a fonte de partículas, os clístrons e os ímãs usados. Mas não são simples computadores, serão supercomputadores, com supermemórias para monitorarem os feixes, coletar registros, analisar dados e desligar o sistema em caso de uma emergência.

Os detectores e as Tvs estarão por todo o sistema, para monitorarem vazamentos. Agora nosso acelerador está pronto.

Afinal, encontramos o quê?

Foi a pergunta que o doutor diretor geral do Cern (Centro Europeu de Pesquisas Nucleares) Rolf-Dieter Heuer fez se referindo ao Bóson de Higgs. Imagine um nada. O vácuo, o vazio. Uma enorme imensidão…vazia.
Pois assim era o nosso Universo. E de repente, nesse aparentemente nada, existia um campo, que exercia uma força e a esse campo demos o nome de campo de Higgs. A partir desse campo foram surgindo partículas, que colidiam entre si, formando um bóson, o Bóson de Higgs.
Bóson é uma partícula mediadora, pois é ela que dá massa às outras partículas também chamadas elementares. Existem outros bósons, mas o de Higgs foi o primeiro, o que deu origem aos outros bósons e a todas as 60 partículas elementares.
O que são partículas elementares?
Falando de uma maneira simples e ndão científica, são partículas em que dentro delas não há nada, não se encontra nada, a não ser a força delas, ou melhor, energia.  Já sabemos que foram elas que criaram tudo, mas, de onde elas surgiram? Do campo citado anteriormente. Então, se não existisse o campo, não estaríamos aqui, nem existira nada no Universo, tudo continuaria um imenso vazio.
Além de ele dar sentido, ou melhor, massa para que as outras partículas fossem formadas, ele atua e dá sentido ao Modelo Padrão. Mas o que é esse Modelo Padrão?
O Modelo Padrão é o conjunto de todas essas 61 partículas (quaks, léptons e bósons) e é ele que descreve o universo, pois tudo o que existe nele é constituído dessas partículas. No inicio o nosso universo era constituído por essas partículas, que faziam parte de uma “sopa cósmica”.
Assim, o Higgs é o responsável por promover uma quebra de simetria e, cada partícula, em resposta a essa quebra de simetria, ganha uma massa particular. Temos 61 partículas, contanto o Higgs, que através de interações, formaram, em muito e muito tempo, o nosso Universo. Ainda falta uma partícula, o gráviton, pois ela é que vai conseguir unificar as teorias, mas isso é outra história.
Mas a grande incógnita da física, ou melhor, da ciência é, como disse Marcelo Gleiser : Como que surgiu a vida a partir do nada, da “não vida”? Nada? O vácuo é o nada e esse nada pode ser constituído pelo campo de Higgs, então do “nada” algo foi produzido. Fantástico não é mesmo?
Por causa do Bóson de Higgs houve uma quebra simultânea de simetria. Vou explicar melhor usando uma analogia. Numa sala há várias pessoas assistindo um espetáculo, todos em simetria olhando para o palco, de repente, entra uma pessoa muito famosa e todos da sala olham para essa pessoa e querem pedir autógrafos, fazer perguntas e tocá-la. Essa pessoa quebrou toda a simetria daquela sala. E foi isso que o Bóson de Higgs fez. Como a doutora Maria Cristina Abdalla diz, “ele é como se fosse um rei e todos querem interagir com ele”.
Então, resumindo, o Modelo Padrão descreve cada uma das partículas e suas interações, e a descoberta do Bóson de Higgs e do seu campo conseguiram dar veracidade ao Modelo Padrão, a princípio foi uma previsão teórica e depois, com a construção do LHC, houve a descoberta experimental e o sonho se tornou realidade, encontraram a partícula que deu origem a tudo.
 
Mas por que Partícula de Deus?

Na realidade, ela foi chamada, inicialmente de The goddam particle (partícula maldita) devido ao trabalho para ser detectada, tanto que foi construído o LHC (Large Hadron Colision). Decidiram que fosse mudado o seu nome para que ficasse mais legal. Um jogo de marketing.
Essa partícula, na realidade, dá uma estrutura para o vácuo, pois quando achávamos que não existia nada lá, aparece o Higgs com seu campo. Ela é diferente, é fundamental para entendermos de onde surgimos e de onde tudo surgiu.
Será que um dia vamos conseguir unificar tudo, todas as forças, ter uma teoria de tudo? Já conseguimos unificar as três forças, eletromagnética, nuclear forte e nuclear fraca, mas falta uma para unir tudo, a força gravitacional.
Mas ainda falta muita coisa para descobrirmos e há uma teoria que prediz os grávitrons, que são as partículas responsáveis pela força gravitacional, digamos assim. E essa teoria diz que estão num outro universo ou numa outra dimensão e nesse modelo teórico estão previstas 11 dimensões. Se quiserem ler mais sobre isso acessem http://fisicasemeducacao.blogspot.com.br/search/label/teoria%20M.
O ATLAS (A Toroidal LHC Apparatus) e CMS (Compact Muon Solenoid) estão tentando encontrar as dimensões extras, pois se supõe que os grávitons podem ter escapado por dimensões extras. Então vamos em busca das partículas assimétricas. E quem sabe um novo modelo padrão vai ser formado?
É confuso! É coisa de ficção científica, mas é real e fascinante. Agora, depois de tudo isso que leu, você se pergunta: qual a importância do Higgs em nossas vidas? Simples, sem o Higgs o nosso universo não teria acontecido.

ACIDOS , BASES E SAIS

Ácidos

Ácidos têm sabor azedo.
Se íons hidrônio são encontrados em uma solução, a solução é ácida em natureza. Íons hidrônio (ou hidroxônio) são os únicos íons com carga positiva (cátions) formados quando um ácido é dissolvido em água. Todas as propriedades de um ácido se devem à presença destes íons. A fórmula química de um íon hidrônio é H3O1+.
Ácidos são conhecidos como 'doadores de prótons'.

Exemplos de Ácidos

Aqua Regia contém ácido Nítrico concentrado e ácido Clorídrico concentrado na razão 1:3. Aqua Regia significa 'Água Real' em Latim. Ela é usada para dissolver metais nobres como ouro e platina.
O leite contém ácido lático. Ácido lático é nomeado a partir da palavra em latim 'lac', que significa leite.
O vinagre é ácido acético bem diluído. O vinagre utilizado para fins culinários contém aproximadamente 4% de ácido acético. A fórmula química do ácido acético é CH3COOH.
O ácido sulfúrico é usado na manufatura de baterias de carro. Ele também é conhecido como 'Óleo de Vitriol'. A fórmula química do ácido sulfúrico é H2SO4.
O ácido carbônico é responsável pelo gás nos refrigerantes. O ácido carbônico se decompõe em bolhas de dióxido de carbono. A fórmula química do ácido carbônico é H2CO3.
Ácido Ascórbico é o nome químico da Vitamina C. Deficiência de Vitamina C no organismo pode causar uma doença chamada escorbuto. A fórmula química do ácido ascórbico é C6H8O6.
Bases

Bases têm sabor amargo e são semelhantes ao sabão quando as tocamos.
Se íons hidroxila são encontrados em uma solução, a solução é básica em natureza. Íons hidroxila são os únicos íons com carga negativa (ânions) formados quando uma base é dissolvida em água. Todas as propriedades de uma base se devem à presença destes íons. A fórmula química de um íon hidroxila é OH1-.
Bases são conhecidas como 'aceitadoras de prótons'.
Exemplos de Bases

Anti-Ácidos ajudam a neutralizar a acidez (do ácido clorídrico) no estômago. Eles geralmente contêm duas bases, chamadas hidróxido de magnésio e hidróxido de alumínio. A fórmula química do hidróxido de magnésio e hidróxido de alumínio é Mg(OH)2 e Al(OH)3 respectivamente.
Hidróxido de Sódio é também conhecido como 'Soda Cáustica'. Sua fórmula química é NaOH.
Hidróxido de Potássio é também conhecido como 'Potassa Cáustica'. É usado na manufatura de baterias alcalinas. Sua fórmula química é KOH.
Amônia é um gás básico o qual é usado na manufatura de fertilizantes como a Uréia, nitrato de amônio e sulfato de amônio. A amônia é produzida para fins comerciais através do processo de Haber. Quando dissolvida em água, a amônia forma uma base conhecida como hidróxido de amônio. A fórmula química da Amônia é NH3.
Sais

Um sal é definido como um composto formado pela substituição completa ou incompleta do íon hidrogênio de um ácido por um radical básico.
Um sal normal é formado pela substituição completa do íon hidrogênio de um ácido por um radical básico enquanto um sal ácido é formado pela substituição incompleta do íon hidrogênio de um ácido por um radical básico.
Exemplos de Sais

Sulfato de Sódio é um sal normal enquanto Bisulfato de Sódio é um sal ácido.
Cloreto de Sódio é solúvel em água enquanto o Carbonato de Cobre, Cloreto de Chumbo e Sulfato de Bário são insolúveis em água.
Carbonato de Sódio é usado na manufatura de detergentes e do vidro comum.
Sulfeto de Zinco é insolúvel em água enquanto Fosfato de Potássio, carbonato de Amônio e Cloreto de Bário são solúveis em água.
Nitrato de Amônio é usado na fabricação de fertilizantes.

experimento de Becquerel.


segunda-feira, 25 de junho de 2012

MORRE TARTARUGA SOLITÁRIO JORGE, 'CRIATURA MAIS RARA DA TERRA


Solitário Jorge, a última tartaruga gigante de sua espécie que habitava as ilhas Galápagos, morreu neste domingo depois de infrutíferas tentativas para que se reproduzisse, informou a reserva ecológica equatoriana. Muitos cientistas o consideravam a criatura mais rara da Terra. 
O animal, único sobrevivente da espécie Geochelone abigdoni, tinha idade estimada em mais de 100 anos e foi encontrado sem vida no centro de criação de tartarugas terrestres da ilha Santa Cruz, informou o Parque Nacional Galápagos (PNG) em um comunicado.
"Com a morte desta tartaruga se extingue a espécie da ilha Pinta", de onde a tartaruga gigante era originária, lamentou a direção do parque, que em 1993 submeteu Jorge a um processo de reprodução mal sucedido.
O Parque Nacional Galápagos anunciou que, em "homenagem" a Solitário Jorge, realizará um seminário internacional nos próximo mês de julho para elaborar uma estratégia de manejo das populações de tartaugas nos próximos dez anos, com a finalidade de obter a restauração das espécies.

ENGENHARIA QUIMICA


engenharia química é um ramo da engenharia que combina conhecimentos de químicabiologia , física e matemática para projetar, construir, e operar plantas químicas de matérias-primas em produtos finais através de processos químicos, biológicos ou físicos, chamados de Operações Unitárias.

Engenheiros Químicos projetam, constroem e operam plantas industriais
Numa definição mais formal, dada pelo American Institute of Chemical Engineers (AIChe)[1], “Engenharia Química é a área/profissão que dedica-se à concepção, desenvolvimento, dimensionamento, melhoramento e aplicação dos Processos e dos seus Produtos. Neste âmbito inclui-se a análise econômica, dimensionamento, construção, operação, controle e gestão das Unidades Industriais que concretizam esses Processos, assim como a investigação e formação nesses domínios”.
Embora a engenharia química tenha sido concebida inicialmente na Inglaterra, sofreu seu desenvolvimento principal nos Estados Unidos, impelida primeiramente pelo petróleo e indústrias químicas pesadas, e depois pela indústria petroquímica, com a produção de plásticos, borracha sintética e fibras sintéticas a partir do petróleo e do gás-natural. No início do século passado, a engenharia química desenvolveu os processos físicos de separação tais como destilação, absorção e extração, nos quais foram combinados os princípios de transferência de massa, fluidodinâmica e transferência de calor com a finalidade de projetar equipamentos.
Os projetos de engenharia química são baseados em três leis fundamentais: conservação de massa, conservação de energia e conservação de quantidade de movimento. A Transferência de massa e a Transferência de calor entre os processos são determinados através da aplicação das leis fundamentais da Física. Na aplicação de tais leis os engenheiros químicos utilizam os princípios da Termodinâmicacinética química efenômenos de transporte.
A tarefa complexa de dimensionamento e análise de equipamentos da engenharia química pode ser auxiliada pela simulação de processos. Os simuladores (ASCEND, Aspen Plus, CFX, Design II, Dymola, EMSO, Hysys, Petro-SIM, Pro II, SysCAD, DWSim, dentre outros) resolvem os balanços de massa e energia e são normalmente acompanhados de uma biblioteca de equipamentos que representam as mais diversas operações unitárias da engenharia química. Simulação é apenas mais uma ferramenta que o engenheiro químico pode lançar mão. Porém o domínio dos conceitos básicos são insubstituíveis.

COMEÇA REMOÇÃO DO COSTA CONCORDIA

http://veja.abril.com.br/multimidia/video/comeca-remocao-do-costa-concordia

COMO SURGIU OXIGENEO NA TERRA

http://veja.abril.com.br/multimidia/video/ntenda-como-o-oxigenio-se-proliferou-pelo-ar-da-terra

domingo, 24 de junho de 2012


Tipos de reações:

Reações de Síntese:
Estas reações são também conhecidas como reações de composição ou de adição. Neste tipo de reação um único composto é obtido a partir de dois compostos.

Reação de Decomposição:

Como o próprio nome diz, este tipo de reação é o inverso da anterior (composição), ou seja, ocorrem quando a partir de um único composto são obtidos outros compostos. Estas reações também são conhecidas como reações de análise

Reações de Simples Troca:
Estas reações ocorrem quando uma substância simples reage com uma substância composta para formar outra substância simples e outra composta. Estas reações são também conhecidas como reações de deslocamento ou reações de substituição

Reações de Dupla Troca:

Estas reações ocorrem quando duas substâncias compostas resolvem fazer uma troca e formam-se duas novas substâncias compostas